A New Empirical Analysis Technique for Shale Reservoirs

HE Zhang, P.E., Ph.D.
An Engineer at Ryder Scott Company

SPEE Meeting of Houston Chapter
October 5, 2016
Disclaimer

The following presentation does NOT represent the opinions of Ryder Scott Company.

The method presented here is not used for any reserve work performed by Ryder Scott at this time.
Outline

- Extended Exponential Decline Curve Analysis
- Problems with Modified Hyperbolic (MH)
- Application in Four Shale Reservoirs
- A Step Fitting Result
- Application in Conventional Reservoirs
- Discussion & Conclusions
A Typical Shale Gas/Oil Decline Curve

- Early time – sharp decline
- Late time – flatter decline
- How many flow regimes?
- When is the switching point of different flow regimes?

If all you have is the data indicated by the markers, how does one determine the switching point?
b-factor Changes with Time

Despite Good Match of History, Forecasting Ability Poor, Especially with Limited Early Data

<table>
<thead>
<tr>
<th>Years of History Matched</th>
<th>Best Fit, Arps “b”</th>
<th>Error in Remaining Reserves, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.66</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>1.91</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>1.51</td>
<td>30.6</td>
</tr>
<tr>
<td></td>
<td>1.20</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>0</td>
</tr>
</tbody>
</table>

From Dr. W. John Lee’s classnotes —2016 Spring
Critique of Arps

Arps in 1944

P is the flowrate

approximately constant, as in Table 2, the following differential equation can be set up:

\[
\frac{d}{dt} \left(\frac{P}{dP/dt} \right) = -b \tag{7}
\]

in which \(b \) is a positive constant. Integration of Eq. 7 leads to:

\[
\frac{P}{dP/dt} = -bt - a_0 \tag{8}
\]

Fulford and Blasingame 2013

The classic Arps [1945] decline curve approach is limited to cases where wells are producing in boundary dominated-flow (implying a \(b \)-parameter between 0 and 1.0) and the \(b \)-parameter can be described by a constant value. In practice, we observe values of the \(b \)-parameter above 1.0 for extended periods of time prior to the onset of boundary-dominated flow. This difference between theory and application where the \(b \)-parameter applied to early-time data is assumed to be greater than 1.0, and held constant until a terminal exponential decline rate is reached (Modified Hyperbolic Model). This approach assumes prior knowledge of both the average \(b \)-parameter for the life of the well, and the terminal exponential decline rate; both of which are unknown for many emerging unconventional plays and may differ within a play as a result of well design. Recent attempts to address this issue have resulted in more rigorous models, such as the Power-Law Exponential (Ilk et al [2008]); however, the Modified Hyperbolic Model remains in popular use within the industry.

In the rate-time relationship for hyperbolic decline:

\[
P = P_0 \left(x + \frac{bt}{a_0} \right)^{-1/b} \tag{10}
\]
Extended Exponential Decline Curve Analysis (EEDCA)

- Keep the same Exponential form of Arps equation for simplicity
 \[q = q_i e^{-at} \]

- But exponent \(a \) should vary with time
 \[a = \beta_l + \beta_e e^{-tn} \]
 where \(\beta_e \) is a constant to account for the early (fully-transient) period, which should be larger than \(\beta_l \) as recommended;
 \(\beta_l \) is a constant to account for the late-life period;
 \(n \) is an empirical exponent;
 \(t \) is the time in months.

- Note if the \(\beta_l \) is set equivalent to \(D_{\text{min}} \) as a constant, the EEDCA becomes a 3-parameter equation similar to the Arps hyperbolic equation; if the \(\beta_e \) is set to 0, the EEDCA reduces to the identical form of the exponential equation (with \(a = \beta_l \)).
Critique of Arps #1: Assumption of constant b-factor

Arps empirical equation is used to describe production performance. Therefore,

- **Step 1**: we can reproduce similar projections by both Modified Hyperbolic (MH) and EEDCA methods.
- **Step 2**: fix all parameters in the EEDCA method as constants, and bring them into the original b-factor definition by Arps, we can investigate if b-factor truly changes with time in shale.

\[
b = \frac{\frac{dq}{dt}}{\frac{d^2q}{dt^2}} \quad \quad \quad b = -\frac{\beta e e^{-tn} t^{n-1}(nt^n-n-1)}{[\beta + \beta e e^{-tn} (1-t^n)]^2}
\]

- **Step 3**: plot the b-factor over time numerically

If b-factor is proved not a constant, we cannot obtain the form of hyperbolic equation!
CRITIQUE OF ARPS #2: ILL-IMPOSED D_{MIN}

- What is the decline rate D_{min}? How to predict?
- D_{min} independent from early-time data, and can be only determined in the late-life when it is observed (purple box).
- A well generally produces from the same reservoir volumes over its producing life. Therefore, the flowing pattern must be continuous, and the independent projection strategy between early- and late-life is not a robust solution.
- This D_{min} has no theoretical support but is instead an empirical adjustment; further, the value is also difficult to defend without actual wells that are producing late in their life.
CRITIQUE OF ARPS #2: ILL-IMPOSED D_{MIN} —CONT’D

- EEDCA β_l is always a contributing factor to the production model, starting from the first production data point.

\[q = q_i e^{-at} \quad a = \beta_l + \beta e^{-t^n} \]

- EEDCA method, β_l dominates the late life projection, as does D_{MIN} in MH method.

- β_l can be an early-time factor and is expected to react on the projection sooner than D_{MIN}. We will graphically demonstrate the contribution from β_l with an example well from Haynesville shale.
CRITIQUE OF ARPS #2: ILL-IMPOSED D_{MIN} — CONT’D

Arps empirical equation is used to describe production performance. Therefore,

- **Step 1**: we can reproduce similar projections by both MH and EEDCA methods.
- **Step 2**: fix all parameters in the EEDCA method as constants, and bring them into the original decline rate definition by Arps.

\[
D = \frac{dq}{dt} = -\frac{1}{q} \frac{dq}{dt} \quad \Rightarrow \quad D = \beta_1 + \beta_3 e^{-tn} (1 - nt^n)
\]

- **Step 3**: Plot the decline rate over time numerically

SPE 181536 • Effective Applications of Extended Exponential Decline Curve Analysis to both Conventional and Unconventional Reservoirs
CRITIQUE OF ARPS #3: SWITCHING POINT IN TIME

Modeling the transition
• Arps (modified) combines two distinct equations joined at one point in time;
• EEDCA has a single equation representing continuity from early time through “transition” to late time.

For constant decline rate over time, we have \(\frac{dD}{dt} = 0 \)

By using EEDCA, we derive equation to calculate switching point for MH method.
\[
t_{\text{switching}} = n \sqrt{n+1} \sqrt[n]{n}
\]
Haynesville (47 wells)

(A) Log-log Diagnostics

(B) Production Rate, MCFG/M

(EUR Comparison (Modified Hyperbolic vs. EEDCA)

(B) $b = -\frac{\beta e_n e^{-t^n} t^{n-1} (n t^n - n - 1)}{[\beta t + \beta e^{-t^n} (1-t^n)]^2}$

SPE 181536 • Effective Applications of Extended Exponential Decline Curve Analysis to both Conventional and Unconventional Reservoirs
Haynesville –cont’d

Fig. 5 – (Haynesville) An example well: a-value is the red dot line, which is always contributed from both β_0 and β_1 parameters. The green area represents the contribution from β_0, which plays more important role in late-time life. The same data is plotted in (A) Cartesian and (B) Semi-Log coordinates.

$\alpha = \beta_1 + \beta_0 e^{-\tau^n}$

$-\frac{\ln(q/ql)}{t} = \beta_1 + \beta_0 e^{-\tau^n}$

MH strategy
Haynesville – cont’d

• Calculated D_{min} by $D = \beta_1 + \beta_e e^{-t^n} (1 - nt^n)$
• Final P50 D_{min} is 5.26%; Average D_{min} is 5.77%
Summary of Shale Studies

The D_{min} approach is an approximate practice, if the relative dropping rate of decline rate at any two adjacent months is less than 0.1.

The approximate D_{min} might be close to the true value, but it still takes a long time to reach the true value.

Calculated $t_{\text{switching}}$’s are all longer than 35 years, which indicates D probably keeps decreasing for the entire life. The forced D_{min} in MH might not be appropriate.

Table 1 - Summary of the Four Studied Shale Reservoirs

<table>
<thead>
<tr>
<th></th>
<th>No. of Studied Wells</th>
<th>Average n-value</th>
<th>Average β_c</th>
<th>Average β_i</th>
<th>Back Calculated P50 D_{min}</th>
<th>Back Calculated Average D_{min}</th>
<th>Average EUR by EEDCA*</th>
<th>Average EUR by Modified Hyperbolic*</th>
<th>i-th month (/12-th year Switch to Exponential)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haynesville</td>
<td>47</td>
<td>0.244</td>
<td>0.734</td>
<td>0.060</td>
<td>5.26%</td>
<td>5.77%</td>
<td>2,271</td>
<td>2,241</td>
<td>787 (65.5)</td>
</tr>
<tr>
<td>Barnett</td>
<td>25</td>
<td>0.252</td>
<td>0.519</td>
<td>0.060</td>
<td>5.70%</td>
<td>6.00%</td>
<td>1,779</td>
<td>1,764</td>
<td>574 (47.8)</td>
</tr>
<tr>
<td>Eagle Ford (Gas Window)</td>
<td>33</td>
<td>0.269</td>
<td>0.687</td>
<td>0.060</td>
<td>4.43%</td>
<td>5.19%</td>
<td>3,458</td>
<td>3,416</td>
<td>450 (37.5)</td>
</tr>
<tr>
<td>Wolfcamp</td>
<td>31</td>
<td>0.231</td>
<td>0.590</td>
<td>0.060</td>
<td>6.32%</td>
<td>7.90%</td>
<td>339</td>
<td>338</td>
<td>1,372 (114.3)</td>
</tr>
</tbody>
</table>

*EUR Unit: MMscf or MSTB

SPE 181536 • Effective Applications of Extended Exponential Decline Curve Analysis to both Conventional and Unconventional Reservoirs
Step Fitting – Candidate Well

- A Barnett gas well has been production since Apr. 2000. API is 42-121-30703-00-00.
Step Fitting – Procedure

• All the curve fittings by MH and EEDCA were done by VBA auto-fitting to remove individual bias.
• Started with 18 months data and compared results from both methods.
• Repeated this procedure with additional 6 months data until the complete 192 month production history was used.
• In the extreme case at the 30th month of production, the auto fitting just presented an exponential decline as the b-factor is 0 by Arps method.
Step Fitting – Results

Fig. 16 – Projected EURs vs. available historical data by EEDCA and Modified Hyperbolic method (auto-fitting results).

Fig. 17 – n-value in EEDCA and Arps b-factor vs. available historical data (auto-fitting results).
Tight Gas Case #1

Well MGA-76-1-004

(A) Log-log Diagnostics

(B) Production Rate, MSCF/M

Historical Data
Modified Arps
EEDCA
Tight Gas Case #2

Well EXXON -002

(A) Log-log Diagnostics

(B) Production Rate, Mscf/M

- Historical Data
- Modified Arps
- EEDCA
Tight Gas Case #3

Well MGA-76-1-006

(A) Log-log Diagnostics

(B) 10,000

Production Rate, MSCF/M

Time, Months

Historical Data
Modified Arps
EEDCA

Production time, Month

Flowrate, MSCF/M

1,000

100

10

1

0 200 400 600 800

1,000

100

10

1
Tight Gas Case Summary

<table>
<thead>
<tr>
<th>Lease Name</th>
<th>b-factor</th>
<th>n-value</th>
<th>MHDCA D_i</th>
<th>EEDCA β_s</th>
<th>EEDCA β_l</th>
<th>MHDCA EUR, MMSCF</th>
<th>EEDCA EUR, MMSCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA-76-1-006</td>
<td>1.00</td>
<td>0.26</td>
<td>0.05</td>
<td>0.43</td>
<td>0.05</td>
<td>62.97</td>
<td>62.35</td>
</tr>
<tr>
<td>EXXON -002</td>
<td>0.86</td>
<td>0.24</td>
<td>0.03</td>
<td>0.22</td>
<td>0.05</td>
<td>122.08</td>
<td>122.11</td>
</tr>
<tr>
<td>MGA-76-1-004</td>
<td>1.00</td>
<td>0.27</td>
<td>0.01</td>
<td>0.33</td>
<td>0.05</td>
<td>61.82</td>
<td>61.06</td>
</tr>
<tr>
<td>Average</td>
<td>0.95</td>
<td>0.26</td>
<td>0.03</td>
<td>0.33</td>
<td>0.05</td>
<td>82.29</td>
<td>81.84</td>
</tr>
</tbody>
</table>
Discussion

• If the assumption of a constant b-factor is inappropriate for shale, the hyperbolic equation is invalid.

• D_{min} and β_1 dominate the late-life projection in modified hyperbolic and EEDCA, respectively. Unlike the D_{min} in Arps method, the β_1 always contributes in curve fitting, potentially from the first production data point.

• Any independent projection strategy between early- and late-life is not a robust solution, whatever a segment projection strategy or MB.
Conclusions

• EEDCA has advantages for shale evaluations:
 – It does not require an estimate of when to switch to exponential decline.
 – The assumption of a constant b-factor is likely invalid for shale. However, EEDCA is not limited to that constraint.
 – β_l can be calibrated by early-life production data, whereas D_{\min} is independent and isolated from the early-life data.

• EEDCA can be applied for various conventional wells in an exponential or hyperbolic decline behavior

• EEDCA becomes a 3-parameter equation (q_i, β_e, n) in shale early-life if β_l is set as a fixed value (similar to a small D_{\min}). Easy to fit.

For details, please refer to SPE papers 175016 and 181536.
A New Empirical Analysis Technique for Shale Reservoirs

HE Zhang, P.E., Ph.D.
An Engineer at Ryder Scott Company

SPEE Meeting of Houston Chapter
October 5, 2016