Well Performance in Unconventional Reservoirs — State-of-the-art Analysis/Interpretation, and Models

Dilhan ILK
DeGolyer and MacNaughton
Dallas, TX 75244 (USA)
+1.214.891.7381 — dilk@demac.com
Production from Unconventional Resources:

● Discussion: *Eagle Ford Well Count from Texas Railroad Commission*
 - Wells completed and permitted in the Eagle Ford Shale.
 - January 2013 ≈ 3,400.
 - March 2014 ≈ 8,400.
Production from Unconventional Resources:

Major challenge in relating basic flow phenomena to reservoir-scale models.

Issues/Comments:
- Fluid storage in the nano-pores, organic matter, adsorbed?
- Flow path can be as small as 10-20 molecular diameters?
- Mineral composition varies widely—Each play is unique.
Production from Unconventional Resources:

- Challenges associated with sampling the reservoir fluid.
- Near critical fluids — composition issues and variations in p_{crit} and T_{crit}.
- Phase envelope shift and suppression of the bubble point.
- Molecular dynamics work to resolve PVT in nano-pores?

Phase diagrams of confined and unconfined heavy gas condensate mixture (Pedersen et al, 1989). (vertical (red) line is the reservoir temperature)

The percentage of liquid drop out (% by volume) of a heavy gas condensate mixture (Pedersen et al, 1989) at 400°F. (400°F is reservoir temperature — see plot at left)

From: Brent Thomas (Weatherford) — Schematic on p_b suppressed (undersaturated oil)
Production from Unconventional Resources:

- Microseismic pattern from the Bakken Oil Reservoir:
 - From: Whiting Petroleum Presentation (2010)

- Trilinear flow solution model configuration:
 - From: Ozkan et al. (2010)

- Pressure distributions for a discrete fracture network (DFN) model:
 - From: Kappa Engineering

- Numerical simulation configuration for a multi-frac horizontal well:
 - From: Kappa Engineering
Problem Statement: *Uncertainty on Outcome*

Decline Curve Analysis: *Haynesville Performance Possibilities*

- Significant uncertainty on *EUR* based on the selection of *b*-value.

Schematic for Haynesville Shale Gas Well Performance Possibilities
Production Rate and Time Plot (Semilog Scale)

≈2 years of production data from a Haynesville Shale gas well

Decline Curve Analysis:
- *EUR* = 7.81 Bscf
- *EUR* = 6.15 Bscf
- *EUR* = 5.31 Bscf
- *EUR* = 3.98 Bscf

Production Time, days

Gas Flowrate, *q*_g, MSCF/D

EUR = 3.98 Bscf
EUR = 5.31 Bscf
EUR = 6.15 Bscf
EUR = 7.81 Bscf
Presentation Outline:

- **Decline Curve Analysis**
 - Modified hyperbolic equation
 - Time-rate characteristic behavior
 - Advanced decline curve relations
 - Comparative studies

- **Production Diagnostics**
 - Diagnostic plots
 - Flow regimes and characteristic behavior

- **Analysis and Modeling**
 - Horizontal well with multiple fractures model
 - Analysis and modeling examples
 - Multi-well modeling and well spacing
 - Uncertainty and non-uniqueness

- **Concluding Remarks**
Decline Curve Analysis

Dilhan ILK
DeGolyer and MacNaughton
Dallas, TX 75244 (USA)
+1.214.891.7381 — dilk@demac.com
Decline Curve Analysis: *Modified Hyperbolic Equation*

- **Modified Hyperbolic Equation**
 - The schematic represents the most common approach (aka. modified hyperbolic) to estimate ultimate recoveries (EUR).
 - This approach could be "non-unique" in the hands of most users, and often yields widely varying estimates of reserves with time.
Decline Curve Analysis: \textit{Time-Rate Diagnostics}

Basis for decline curve relations:

\[D = -\frac{1}{q_g} \frac{dq_g}{dt} \]

\[b = -\frac{d}{dt} \left[\frac{q_g}{dq_g/dt} \right] \]

\textbf{Flow Regimes: (Time-Rate Data)}

- Identify diagnostic/characteristic behavior exhibited by data.
- Evaluate \(D(t) \) and \(b(t) \) continuously (at all points).
- Power-law exp. relation is based on power-law behavior of \(D \)-parameter.
Decline Curve Analysis: *Eagle Ford Oil Example*

![Decline curve plot](image)

Advanced decline curve relations (recently introduced) — (ref. SPE 162910)

2. Stretched Exponential* (2009)
3. Duong (2010)
4. Logistic Growth (2011)
5. Transient-Hyperbolic (2013)
6. ... ???

(*Power-law exponential and stretched exponential relations are almost identical relations, but introduced differently.)*

- Each decline curve model can be described as empirical (no direct link with theory) and generally center on a particular flow regime and/or characteristic behavior.
- Can time-rate analysis truly represent well performance?
Decline Curve Analysis: Continuous EUR

Analyze All Intervals Using the Hyperbolic Relation

50 days
EUR = 9.42 BSCF

250 days
EUR = 6.08 BSCF

1,930 days
EUR = 4.11 BSCF

Analyze All Intervals Using the Power-Law Exponential Relation

EUR = 4.54 BSCF

EUR = 4.32 BSCF

EUR = 4.06 BSCF

Find Lower Limit Using q_g vs. G_p Straight Line Extrapolation

$G_{p,max} = 0.31$ BSCF

$G_{p,max} = 1.18$ BSCF

$G_{p,max} = 3.57$ BSCF
Decline Curve Analysis: *Continuous EUR*

Plot G_p Data and EUR Estimates from Models vs. Time for All Intervals

Identify the Upper Limit for EUR Using the Power Law Exponential Model

Identify the Lower Limit for EUR Using the Straight Line Extrapolation Technique
Production Diagnostics

Dilhan ILK
DeGolyer and MacNaughton
Dallas, TX 75244 (USA)
+1.214.891.7381 — dilk@demac.com
Production Diagnostics: Identifying Flow Regimes

- **Flow Regimes: (Barnett Shale Example)**
 - Schematic illustrates possible flow regimes exhibited by time-rate-pressure data.
 - Duration/existence of flow regimes is **DIFFERENT** for each play.

![Graph showing Shale Gas Well production data](image)

- **Pressure Drop Normalized Gas Flowrate, \(\frac{q_g}{\Delta P} \), MSCF/D/psi**
- **Time, days**

- **Flow Regimes Diagram**
 - **1.** (1:2 Slope — Linear flow/High fracture conductivity)
 - **2.** (1:4 Slope — Low fracture conductivity)
 - **3.** (1:1 Slope — Fracture interference/Depletion (SRV?))

- **EURLF (VERY OPTIMISTIC)**
- **EURDep (CONSERVATIVE ??)**

Pseudo-elliptical flow regime (flow from matrix to collection of fractures) might exist after fracture interference.
Discussion:

- Well clean-up effects (flowback) dominate early time behavior.
- Half-slope indicates linear flow regime is prevailing for Field A.
- Unit slope indicates fracture interference or depletion type signature (decreasing well productivity) for Field B.
- Long time well cleanup effects and operation issues prevent better diagnostics for Field C.
- Field C wells demonstrate linear and/or bilinear flow type signatures.
Production Diagnostics: **Performance Comparison**

- **Field A** (linear flow dominated):
 - \(\Delta p/q \) and \(t^{0.5} \)

- **Field B** (decreasing well productivity):
 - \(\Delta p/q \) and \(t^{0.5} \)

- **Field C** (erratic production):
 - \(\Delta p/q \) and \(t^{0.5} \)

Graphs:
- Time-Pressure-Rate Diagnostic Plot for All Wells
- Pressure Drop Normalized Cumulative Gas Production versus Material Balance Time
Production Diagnostics: **Grouping Wells**

- **Discussion:**
 - Diagnosis of the performance of 9 wells producing in the same area (plot of productivity index).
 - Performance comparison of multiple wells to identify characteristics.
 - Differences in the productivity can be attributed to completion and operational issues.
Eagle Ford Shale — Production and TVD data from public sources

Contour: TVD (ft)

Bubbles: 6 Month cumulative BOE production (MBOE)

- Wells are grouped by specific characteristics (such as, geology/location, PVT behavior, completion, etc.).
- Representative wells are selected for analysis and modeling.

Production Diagnostics: **Eagle Ford Example**

![Diagnostic Plot: Rate and Time](image1)

![Diagnostic Plot: Normalized Rate and Material Balance Time](image2)

![Diagnostic Plot: Normalized Pressure and Square Root Time](image3)
Diagnostics:

- **PLOT**: Oil Productivity Index versus Cumulative Oil Production
- **OBJECTIVE**: (Empirically) project recovery for a single well based on flow behavior
Analysis and Modeling

Dilhan ILK
DeGolyer and MacNaughton
Dallas, TX 75244 (USA)
+1.214.891.7381 — dilk@demac.com
Analysis and Modeling: **Model Configuration**

1. **Model Parameters:**
 - Permeability \((k) \)
 - Fracture half-length \((x_f) \)
 - Fracture conductivity \((F_c) \)
 - Drainage area \((A) \)
 - Skin factor \((s) \)
 - Well length \((L_w) \)
 - Number of fractures \((n_f) \)

Discussion: *Horizontal Well with Multiple Transverse Fractures*
- This is the simplest model to represent multi-frac horizontal well production.
Analysis and Modeling: **History Matching with Model**

- **Analysis:**
 - **Model**: Horizontal well with multiple fractures, non-linear analysis accounting for multiphase flow and pressure-dependent reservoir properties.
 - **Multiphase Flow**: Rigorous fluid characterization (non-linear solution).
 - **Pressure-dependencies**: Approximate degradations in productivity.
 - Model-based analysis must be guided by production diagnostics.
Forecast:

- Oil and gas rates are extrapolated using the model (80 acres)

- $EUR_{OIL} = 0.23$ MMSTB, $EUR_{GAS} = 1.05$ BSCF
Analysis and Modeling: Model Forecast

- **Forecast:**
 - Constant pressure simulation results are imposed on productivity index and cumulative production plots.
 - Forecast is different with respect to drainage area.

Oil productivity index and cumulative oil production plot

Gas productivity index and cumulative gas production plot
Modeling: *Multi-well Modeling (Well Interference)*

- Used model parameters obtained from the analyzed well(s).
- Assumed development wells have the same well configuration
- Assumed development wells have the same reservoir and fluid properties.
- Vary distance between two wells to investigate the effect of spacing on EUR (Distance between wells corresponds to drainage area).
Analysis and Modeling: **Multi-well Simulation**

- **Pressure Distribution — 1 Year**
- **Pressure Distribution — 3 Years**
- **Pressure Distribution — 5 Years**
- **Pressure Distribution — 8 Years**

- 80 acres well spacing is assumed for the multi-well simulation run.
Analysis and Modeling: Multi-well Simulation

200 acres well spacing is assumed for the multi-well simulation run.
Discussion:

- EUR is a function of well spacing for less than 100 acres drainage area assumption (not affected over 100 acres).
- EUR values are estimated at 30 years of production.
- In our simulation runs, 100 acres drainage area corresponds to 738 ft distance between two wells.
Analysis and Modeling: Uncertainty/Non-uniqueness

16 acres is the minimum "contacted" drainage area

- Different permeability values are utilized for history match and almost identical matches are obtained for each case. It is possible to obtain probabilistic forecasts.

\[
\text{EUR} \approx f(k, x_f, k(p), ...)
\]

Less uncertainty in EUR if minimum contacted drainage area is imposed -- conservative???
Analysis and Modeling: *Time-Rate Profile*

\[q_g = \frac{q_{gi}}{(1 + b D_i t)^{(1/b)}} \]

- \(q_{gi} \) = initial gas production rate
- \(D_i \) = initial decline rate, percent per year
- \(b \) = hyperbolic decline exponent (controls the shape of the curve)
- \(T_d \) = terminal decline (exponential)

Discussion:
- Model-based analysis results can be converted into a time-rate (decline) profile.
Concluding Remarks

Dilhan ILK
DeGolyer and MacNaughton
Dallas, TX 75244 (USA)
+1.214.891.7381 — dilk@demac.com
Concluding Remarks: **Well Performance Analysis Procedure**

- **Analysis**
- **Validation**
- **Forecast**

Diagnostics

- **SPE 144276** — All Wells Data Diagnostics Plot (Pressure Drop Normalized Flowrate versus Production Time)
- **SPE 144274** — All Wells Data Diagnostics Plot (Rate Normalized Pressure Drop versus Square Root of Production Time)
- **SPE 144275** — All Wells Data Diagnostics Plot (Computed D-parameter versus Production Time)
- **SPE 144276** — Well D Data Diagnostics Plot (Flowrate and Calculated Bottomhole Pressure versus Time)
- **SPE 144277** — All Wells Data Diagnostics Plot with Characteristic Decline Model (Pressure Drop Normalized Flowrate versus Production Time)
- **SPE 144275** — Effect of Horizontal Well Length and Number of Fracture Stages Production Forecast Plot for Various Horizontal Well Lengths (L_w) (80 Years) Cumulative Gas Production versus Production Time

SPEE Denver Chapter Luncheon Meeting
Denver, COLORADO | 15 May 2014

Well Performance in Unconventional Reservoirs — State-of-the-art Analysis/Interpretation, and Models

D. ILK | DeGolyer and MacNaughton
Concluding Remarks: *Proved Reserves Categories*

- **Proved reserves (1P):** "... *reasonable certainty* — to be recovered much more likely than not"
- "Reasonably certain* EUR is much more likely to increase or remain constant with time
- **Proved plus Probable reserves (2P):** "... as likely as not to be recovered" (50% prob.)
- **Proved plus Probable plus Possible reserves (3P):** "... possibly but not likely to be recovered" (10% probability)
Concluding Remarks: *Well Performance in Unconventionals*

- Decline curve analysis is currently the primary tool for forecasting, *although it may not be fully representative*.
- Time-rate-pressure data analyses need to become the dominant tool for evaluating completions and forecasting production.
- Diagnostic interpretation of production data is the key to understanding well performance behavior of a given well.
- Diagnostic analyses should be performed prior to model-based analyses to identify flow regimes and to assess the consistency of the data.
- We need to incorporate the fundamentals of flow mechanisms (e.g., near critical fluid behavior, geomechanics, formation characterization, hydraulic fracture growth, etc.) into analysis and modeling for improved analysis and forecasting.
- Numerical simulation gives insight into the evaluation of well spacing for future development.
Well Performance in Unconventional Reservoirs — State-of-the-art Analysis/Interpretation, and Models

END OF PRESENTATION

Dilhan ILK
DeGolyer and MacNaughton
Dallas, TX 75244 (USA)
+1.214.891.7381 — dilk@demac.com
Major References:

