Well Spacing and Reserves Impacts

SPEE – Houston Chapter
November 6th, 2019
Neil H. Little, P.E.
NSAI's Role and Point of View

• Typically engaged by an E&P company or investor

• Product: independent evaluation or audit of resources
 • For company-internal assurance purposes
 • For external disclosures (e.g. SEC reporting)
 • For investment due diligence
 • For financial purposes (e.g. reserves-based lending)

• Typical technical data received and analyzed
 • By well: production data, completions details, location
 • Geologic information, including well logs
 • Forward development plan
How are Well Interactions Defined?

- Producing Horizontal Well (PDP)
- Initial Infill Drilling Horizontal Location
- Second Infill Drilling Horizontal Location
"Tolerate" interference while capturing profitable incremental hydrocarbons

Similar Impact: True infill vs Close proximity step-outs
Downspacing – Unconventionals

Similar outcome, but more variance in spacing and timing of development

NSAI
Potential Determinants of Performance

- Completed lateral length
- Reservoir Sw
- Permeability
- Production strategy
- Initial pressure
- Frac hit management
- Completion sequence
- Well orientation
- Operator
- Extent of SRV
- Frac stage count
- Fluid flow regimes
- OOIP
- Artificial lift type
- Reservoir thickness
- Downspacing strategy
- Landing zone
- Perf clusters/stage
- Extent of natural fractures
- Porosity
- Offset Interference
- Downspacing timing
- Offset maturity
- Restimulation strategy
- Horizontal inclination
- Proppant/stage
- Fluid type/character
- Proximity to faulting
- Fluid/stage
- OGIP
- Spatial geologic variation
- Extent of SRV
- Proportant/stage
- Production drawdown
- Proximity to faulting
- Fluid type/character
Well Interference

- Optimization controls for well economics
 - Well length
 - Completion / stimulation
 - **Well spacing / Wells per section**
- Particularly with well spacing: Maximum value usually achieved at stage of diminishing returns per well
- Goal - "Tolerate" interference while capturing profitable incremental hydrocarbons
Toolbox for Unconventional Analysis

• Performance analysis
 • Performance / Decline Curve Analysis
 • Analogy / Type well profiles
 • Transient versus Boundary Dominated Flow (BDF)
 • BDF Analysis
 • Transient Flow Analysis
 • Analytical models
 • Flowing Material Balance
 • Productivity Index

• Volumetrics

• Numerical simulation

Material Balance Equation
\[
C_t = \frac{1}{V} \times \frac{\Delta V}{\Delta p}
\]

\[
p_i - \bar{p} = m_{pss} N_p
\]

\[
\bar{p} - p_{wf} = b_{pss} \times q_{oil}
\]

\[
q = q_f (1 + b D_f t)^{-1/b}
\]

\[
\frac{m(p_i) - m(p_{wf})}{q_g} = \frac{1.632 \times 10^6 T}{kh} \left[\log\left(\frac{kt}{\phi \mu B r_w^2}\right) - 3.23 + 0.87s \right] \quad \text{... gas}
\]
Dealing with Well Interactions
The Evaluators' Approach

- Boundary conditions/limitations
 - Existing development
 - Operator's plan of future development (POD)
 - OHIP/Recovery factor
- Levers available
 - Reserves categorization
 - Volume adjustment – degradation factors against “parent” well
- Timing
 - Pre-drill - Parents kept whole, volume adjustment to undrilled children
 - Some Time Post-drill – Impact inherent in performance of parent and child
- Complications
 - Frac hits on parents
 - Pad/Batch drilling
 - POD more dense than analog spacing
 - Public allocated data

In between – transition to shared impact
Spacing Tests – Delaware WCA

- Demonstrated results to assign EURs at operator’s planned development spacing – single zone
- Adjust for local well performance and geology
- Confirm total section EUR increases as well count increases with assigned degradation factor
Impact of Well Location – Utica

- Expect unbounded or exterior well to have higher EUR than well interior to development
- Assign undeveloped reserves based on position relative to other wells
Multi-Zone Development – Midland Basin

- Consider inter-zone interference for areas with multiple landing zones
- Projections at lease level can help mitigate allocation errors
- Assign reserves category based on data density and consistency
Early Time Can Be Deceiving

2018 Pattern Results Degraded Over Time

Summary of 2018 Drilling Program
- Drilled 175 wells and completed 174 wells in 2018
- At year-end 2018 we had 17 patterns with 6-10 wells per section density with meaningful production results
- While early pattern well results appear strong vs. the type curve, they have consistently degraded over time
- Oil EUR for the average 2018 pattern well is ~120 MBO in the YE 2018 reserve report
- 2018 results driving management focus in 2019 on improved infill economics through:
 - Upspacing and lateral placement
 - Lowering D&C costs
 - Lowering LOE and overhead

16 of 17 Patterns Above 250 MBO TC at 30 days

4 of 17 Patterns Above 250 MBO TC at 120 days

Alta Mesa
Dealing with Parent/Child and Well Spacing
Incorporating Technology & Geology

• Know the play – no substitute for having seen many wells
• Be cognizant of completion types and lateral lengths
• Statistical analysis may be valuable, but
 • "Close-ology" and EUR trends are meaningful, and
 • Honoring geology (and volumetric in-place) is critical
• Analogy can be highly useful but verify applicability; every well is still unique
• Expect decreased EUR once density reaches some point, but it may not be immediately apparent
• Reasonableness check (and upper limit) involves OHIP/Recovery factor
Disclaimer

This presentation is for general information and illustrative purposes only—its contents should be considered in context of the entire presentation and the date on which it is presented. All estimates, exhibits, and opinions presented herein are subject to change. As in all aspects of oil and gas evaluation, there are uncertainties inherent in the interpretation of engineering and geoscience data; therefore, our opinions necessarily represent only informed professional judgment. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, or suitability of the information contained herein; we will not be responsible for any consequence associated with the reliance on such information. Unless indicated otherwise, the information contained herein does not constitute professional advice or opinions, and it should be considered to be a work in progress. Netherland, Sewell & Associates, Inc. (NSAI) is a Texas Registered Engineering Firm, No. F-2699.

Copyright 2019 NSAI. All rights reserved.